Оглавление                                                                                                                                                             Вперёд

 

 

§ 8. ОПРЕДЕЛЕНИЕ ПО КАРТЕ КООРДИНАТ ТОЧЕК МЕСТНОСТИ , И ОБЪЕКТОВ (ЦЕЛЕЙ)

 

1. Системы координат, применяемые в топографии

Координатами называются угловые и линейные величины (числа), определяющие положение точки на какой-либо поверхности или в пространстве.

Существует много различных систем координат, которые находят широкое применение в различных областях науки и техники.

В топографии применяют такие системы координат, которые позволяют наиболее просто и однозначно определять положение точек земной поверхности как по результатам непосредственных измерений на местности, так и с помощью карт. К числу таких систем относятся географические, плоские прямоугольные, полярные и биполярные координаты.

В системе географических координат положение любой точки земной поверхности относительно начала координат определяется в угловой мере. За начало у нас и в большинстве других государств принята точка пересечения начального (Гринвичского) меридиана с экватором. Являясь, таким образом, единой для всей нашей планеты, система географических координат удобна для решения задач по определению взаимного положения объектов, расположенных на значительных расстояниях друг от друга. Поэтому в военном деле эту систему используют главным образом для ведения расчетов, связанных с применением боевых средств дальнего действия, например баллистических ракет, авиации и др.

Система плоских прямоугольных координат является зональной; она установлена для каждой шестиградусной зоны, на которые делится поверхность Земли при изображении ее на картах в проекции Гаусса, и предназначена для указания положения изображений точек земной поверхности на плоскости (карте) в этой проекции.

Началом координат в зоне является точка пересечения осевого меридиана с экватором, относительно которой и определяется в линейной мере положение всех остальных точек зоны. Начало координат зоны и ее координатные оси занимают строго определенное положение на земной поверхности. Поэтому система плоских прямоугольных координат каждой зоны связана как с системами координат всех остальных зон, так и с системой географических координат.

Применение линейных величин для определения положения точек делает систему плоских прямоугольных координат весьма удобной для ведения расчетов как при работе на местности, так и на карте. Поэтому в войсках эта система находит наиболее широкое применение. Прямоугольными координатами указывают положение точек местности, своих боевых порядков и целей, с их помощью определяют взаимное положение объектов в пределах одной координатной зоны или на смежных участках двух зон.

Системы полярных и биполярных координат являются местными системами. В войсковой практике они применяются для определения положения одних тачек относительно других на сравнительно небольших участках местности, например при целеуказании, засечке ориентиров и целей, составлении схем местности и др. Эти системы могут быть связаны с системами прямоугольных и географических координат.

Система плоских полярных координат (рис. 16) состоит из точки О — начало координат, или полюса, и начального направления ОР, называемого полярной осью. Положение точки М на местности или на карте в этой системе определяется двумя координатами: углом положения Q, который измеряется по ходу часовой стрелки от полярной оси до направления на определяемую точку М (от 0 до 360°), и расстоянием OM=D.

В зависимости от решаемой задачи за полюс принимают наблюдательный пункт, огневую позицию, исходный пункт движения и т. п., а за полярную ось - географический (истинный) меридиан, магнитный меридиан (направление магнитной стрелки компаса) или же направление на какой-либо ориентир.

Система плоских биполярных (двухполюсных) координат (рис. 17) состоит из двух полюсов А и В и общей оси АВ, называемой базисом или базой засечки. Положение любой точки М относительно двух данных на карте (местности) точек А и В определяется координатами, которые измеряются на карте или на местности.


 

 

 

 

 

 

 

 

 

 

 

 


Этими координатами могут служить либо два угла положения, определяющих направления с точек А и В на искомую точку М, либо расстояния D1=AМ и D2=BM до нее. Углы положения при этом, как показано на рис. 17, измеряются в точках А и В или от направления базиса (т. е. ÐА=ВАМ и ÐB=ABM) или от других каких-либо направлений, проходящих через точки Л и В и принимаемых за начальные. Например, на рис. 17 место точки М определено углами положения Q1 н Q2, измеренными от направлений магнитных меридианов.

Указанные выше системы координат определяют плановое положение точек на поверхности земного эллипсоида. Чтобы определить положение точки на физической поверхности Земли, дополнительно к плановому положению указывают ее высоту (отметку) над уровнем моря. В СССР счет высот ведется от среднего уровня Балтийского моря, от нульпункта Кронштадтского водомерного поста. Высоты точек земной поверхности над уровнем моря называются абсолютными, а их превышения над какой-либо другой точкой — относительными.

2. Определение географических координат

Различают географические координаты, полученные из наблюдений  небесных светил, называемые астрономическими, и из геодезических измерений земной поверхности, называемые геодезическими.

Астрономические координаты определяют положение точек местности на поверхности геоида (рис. 1 и 2), на которую эти точки проектируются отвесными линиями с физической поверхности Земли.

Геодезические координаты указывают положение точек на поверхности земного эллипсоида, куда они проектируются нормалями к этой поверхности.

При создании топографических карт применяются преимущественно геодезические координаты. Поэтому, говоря о географических координатах, в дальнейшем будем иметь в виду лишь геодезические координаты.

 

 

 

 

 

 

 

 

 

 

 

 

 

 


Географическими координатами какой-либо точки, например М (рис. 18), являются ее широта В и долгота L.

Широта точки — угол, составленный плоскостью экватора и нормалью к поверхности земного эллипсоида, проходящей через данную точку. Счет широт ведется по дуге меридиана в обе стороны от экватора, от 0 до 90°. Широты точек северного полушария называются северными, а южного — южными.

Долгота точки — двугранный угол между плоскостью начального (Гринвичского) меридиана и плоскостью меридиана данной точки. Счет долгот ведется по дуге экватора или параллели в обе стороны от начального меридиана, от 0 до 180°. Долготы точек, расположенных к востоку от Гринвича до 180°, называются восточными, а к западу — западными.

По топографическим картам масштабов 1:25000 — 1:200000 географические координаты определяют с помощью шкал, имеющихся на рамке каждого листа (рис. 19). Цена деления шкал на картах масштабов 1:25000 — 1:100000 равна 10", а на карте масштаба 1 : 200000 — Г. Для определения географических координат по склеенной карте внутри рамки каждого листа проставлены короткие черточки, показывающие выходы меридианов и параллелей внутрь листа с интервалом через V.

На картах масштабов 1:500000 (рис. 20) и 1:1000000 кроме шкал на рамках имеются и сами линии меридианов и параллелей, образующие сетку географических координат (географическую сетку).                                    

 

 

 

 

 

 

 

 

 

 

 

 

 

Оцифровка шкал и линий сетки географических координат показана на рис. 19 и 20.

Чтобы определить широту какой-либо точки, например точки М, по карте масштабов 1 : 25 000 — 1 : 200 000 (рис. 19), надо приложить линейку к этой точке так, чтобы она проходила через одноименные деления (или их доли) на шкалах западной и восточной сторон рамки, и по одной из этих шкал сделать отсчет. Аналогично, пользуясь шкалами северной и южной сторон рамки определяют и долготу точки.       

При определении географических координат по карте масштаба 1:500000 или 1:1000000 вместо шкал на рамке карты линейку прикладывают к одноименным делениям (или их долям), находящимся на меридианах (параллелях), ближайших к определяемой точке (рис. 20).

 


3. Определение прямоугольных координат

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Особенности системы плоских прямоугольных координат, применяемой в топографии. За оси координат (рис. 21) в этой системе приняты изображение осевого меридиана координатной зоны — ось абсцисс Х и изображение экватора — ось ординат Y.

Оси координат делят зону на четверти, счет которых ведется по ходу часовой стрелки от положительного направления оси X. За положительное направление осей принимают: для оси абсцисс — направление на север, для оси ординат — на восток.

Положение какой-либо точки, например М, указывается ее расстоянием от осей координат: абсциссой х и ординатой у.

Чтобы не иметь дела с отрицательными ординатами, условились значение ординаты у осевого меридиана каждой зоны принимать равным 500 км. Этим самым ось Х как бы переносят к западу от осевого меридиана на 500 км.

Так как в каждой зоне числовые значения ординат повторяются, то для того чтобы по координатам точки можно было определить, к какой зоне она относится, к значению ординаты слева приписывается номер зоны.

Прямоугольная   координатная сетка на топографических картах. На всех листах карт (кроме карты масштаба 1:1000000) имеется сетка квадратов (рис. 19), которую называют прямоугольной координатной сеткой.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


Линии сетки (рис. 22) проведены параллельно осям координат через 2 см на картах масштабов 1 : 50 000 — 1 : 500 000 и через 4 см на карте масштаба 1 : 25 000, что соответствует целому числу километров на местности. Поэтому прямоугольную координатную сетку называют также километровой, а ее линии — километровыми.

Координатная сетка используется для определения прямоугольных координат точек, отыскания на карте местоположения различных объектов при докладах, постановке задач, составлении донесений, для быстрой глазомерной оценки расстояний, площадей, определения направлений и ориентирования карты.

Километровые линии, ближайшие к углам рамки листа карты, подписываются полным числом километров, остальные — сокращенно,  последними двумя цифрами. Таким образом, подпись 5588 (рис. 19) у крайней снизу горизонтальной линии означает, что эта линия проходит в 5588 км к северу от экватора. Подпись 6394 у крайней слева вертикальной километровой линии означает, что она находится в шестой зоне и проходит в 394 км от начала счета ординат, т. е. на 106 км западнее осевого меридиана зоны.

В том случае, когда приходится пользоваться картой в сложенном виде, определить числовое значение километровых линий можно по подписям, расположенным внутри листа у пересечений горизонтальных линий с вертикальными (рис. 19).

Дополнительная сетка на стыке координатных зон. Так как вертикальные километровые линии параллельны осевому меридиану своей зоны, а осевые меридианы соседних зон между собой не параллельны, то при смыкании сеток двух зон линии одной из них расположатся под углом к линиям другой. Вследствие этого при работе на стыке зон могут возникнуть затруднения с использованием координатных сеток, так как они будут относиться к разным осям координат.

Чтобы устранить это неудобство, в каждой зоне на всех листах карт, расположенных в пределах 2° к востоку и западу от границы зоны, обозначена координатная сетка смежной зоны. Чтобы не затемнять такие листы карты, эта сетка показана на карте лишь ее выходами за рамку листа (рис. 23). Ее оцифровка представляет собой продолжение нумерации километровых .линий смежной зоны.

Километровой сеткой смежной зоны пользуются тогда, когда работа ведется с листами карт на стыке двух зон и требуется пользоваться на всех этих листах единой системой координат. Эту сетку проводят карандашом на листах карт одной из этих зон, соединяя по линейке противоположные концы одноименных километровых (вертикальных и горизонтальных) линий сетки соседней зоны.

Использование километровой сетки для определения прямоугольных координат точек и нанесения на карту точек по их координатам. Чтобы указать приближенное местоположение какого-либо пункта на карте, достаточно назвать квадрат сетки, в котором он расположен. Для этого сначала читают (называют) оцифровку горизонтальной километровой линии, образующей южную сторону квадрата, а затем вертикальной линии, образующей его западную сторону, т. е. сначала абсциссу, а затем ординату юго-западного угла квадрата.

Например, при указании положения высоты 347,1 (рис. 23) следует сказать: «Квадрат десять, четырнадцать: высота 347,1». В письменной же форме это будет выглядеть так: «Высота 347, 1 (1014)».

Для более точного указания положения какой-либо точки определяют ее координаты. Для этого к координатам южной и западной линий квадрата, в котором она находится, добавляют расстояния до определяемой точки от этих линий, записывая отдельно абсциссу х и ординату у точки.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


Определяя, например, координаты точки Л (рис. 24), сначала записывают абсциссу нижней километровой линии квадрата, в котором находится эта точка (т. е. 78). Затем измеряют по масштабу (расстояние (по перпендикуляру) от точки А до этой километровой линии, т. е. отрезок т, и полученную величину (1,225км) добавляют к абсциссе линии. Так получается абсцисса х точки А.

Для получения ординаты у точки записывают ординату левой (вертикальной) стороны того же квадрата (т. е. 14) и затем добавляют к ней расстояние, измеренное по перпендикуляру от определяемой точки до этой линии, т. е. отрезок п (в нашем примере 1,365 км).

Таким образом, координаты точки Л будут

x =79225 м; у =15 365 м.

Так как в данном случае при определении координат точки цифровое обозначение километровых линий было записано не полностью а, лишь последними двумя цифрами (78 и 14), то такие координаты называют сокращенными координатами точки Л.

  Если же оцифровку километровых линий записывать полностью, то получим полные координаты. Для точки Л:

x=6179225 м; у=8315365 м.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


Если сокращенные подписи километровых линий на данном участке карты не повторяются, а потому положение объектов на нем определяется однозначно, то пользуются сокращенными координатами. В противном случае применяются полные координаты.

При определении координат точек по карте и нанесении точек на карту по координатам измерения выполняют циркулем или линейкой с миллиметровыми делениями. Для этой цели могут применяться также специальные координатомеры, которые несколько упрощают работу, заменяя циркуль и масштабную линейку.

Координатомеры (отдельно для карты масштаба 1:25000 и карты масштаба 1:50000) имеются, например, на артиллерийском целлулоидном круге АК-3 (рис. 27). Каждый из них представляет по площади квадрат километровой сетки на карте соответствующего масштаба, разбитый на более мелкие квадраты со сторонами по 200 м в масштабе карты. Наименьшее деление на координатомере, изготовленном в масштабе 1: 25 000, соответствует 20 м, в масштабе 1 : 50 000 — 50 м.

Координатомером служит также офицерская линейка, на двух взаимно перпендикулярных краях которой, разбитых на миллиметровые деления, имеются подписи «х» и «у». Пользование офицерской линейкой для нанесения на карту точки Ц по ее координатам показано на рис. 24.

Точность измерения (отсчета) прямоугольных координат на карте по поперечному масштабу примерно равна ±0,2 мм, по миллиметровой линейке и координатомеру ±0,5 мм.

 

 

Оглавление         Вперёд     

 

Hosted by uCoz